If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=84
We move all terms to the left:
b^2-(84)=0
a = 1; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·1·(-84)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*1}=\frac{0-4\sqrt{21}}{2} =-\frac{4\sqrt{21}}{2} =-2\sqrt{21} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*1}=\frac{0+4\sqrt{21}}{2} =\frac{4\sqrt{21}}{2} =2\sqrt{21} $
| (2x-11)^5=1024 | | -9=r/3-11 | | -4m+3=-13 | | 0=w2+1.5w-13.5 | | 12=k2 | | 4x2+16x=-15 | | 5x3x=150 | | x+6(0.44)=x-4 | | (-3,-6)m=1/3 | | -x=4x-8 | | 225x+150+3.5x=2000 | | 6x-19=27 | | (20x+2)+(17+26)=180 | | −3+p7=−5 | | 3^(4x+1)=9^x | | 21x+1-14=180 | | 4+5=6x-13 | | 7h(h-3)=33 | | -2x-4(-4x-5)=-6x+4(5x+5) | | 20x+2+17+36=x | | 15x-12=3x+156 | | (20x+2)=(17+26) | | 2(1-a)+3=a-4 | | 20x+2=17+26 | | -26=-2(4x-7) | | 5x+10=(-15) | | 6b-2=22 | | 2.6b-2=22 | | 5/3x+1/3x=21*2/3+7/3x | | 15+7.5x=90 | | 36÷x2=1 | | Y=4x-6=0 |